1,3-Bis[tert-butyl(di-tert-butylfluorsilyl)amino]trisulfan - eine Verbindung mit FSiNSSSNSiF-Helix

Uwe Klingebiel*, Frank Pauer, George M. Sheldrick und Dietmar Stalke

Institut für Anorganische Chemie der Universität Göttingen. Tammannstraße 4, W-3400 Göttingen

Eingegangen am 5. Juni 1991

Key Words: Disulfane, bis[(fluorosilyl)amino] derivative / Trisulfane, 1,3-bis[(fluorosilyl)amino] derivative / Selane, bis[(fluorosilyl)amino] derivative / Helix structure

1,3-Bis[tert-butyl(di-tert-butylfluorosilyl)amino]trisulfane - a Compound with FSiNSSSNSiF Helix

The lithium derivative of tert-butyl(di-tert-butylfluorosilyl)amine (1) reacts with sulfur or selenium to give the bis[(fluorosilyl)-amino]di- and -trisulfanes 2, 3 and -selane 4, respectively. The trisulfane 3 crystallizes from n-hexane and exhibits a helical structure (X-ray analysis).

N-Silylierte Aminosulfane sind sowohl durch Reaktion von Schwefel als auch von Chlorsulfanen mit Silvlamiden zugänglich¹⁾. Bis[bis(trimethylsilyl)amino]selan und -tellan wurden kürzlich aus Lithium-bis(trimethylsilyl)amid und Dichlordiselan bzw. TeCl₄ hergestellt und kristallstrukturanalytisch untersucht²⁾. Ebenfalls bekannt ist die entsprechende Schwefelverbindung³⁾.

Unbekannt sind bisher Reaktionen von Chalkogenen mit lithiierten Aminofluorsilanen. Diese Verbindungen zeigen sowohl das Reaktionsverhalten von Silylamiden als auch von Iminosilanen (Schema $1)^{4-6}$).

Schema 1

$$-Si-N$$

$$0-C$$

$$+ 0=C$$

$$THF$$

$$-Si=N-$$

$$-Si=N-$$

$$Si-N-$$

$$F$$

$$SiR_3$$

$$-LiF$$

$$Si-N-$$

$$F$$

$$CI$$

$$CI$$

Reaktionen mit Aldehyden, Ketonen⁵, Al₂Cl₆⁴, THF⁶) führen zu Verbindungen, die als Produkte von intermediär gebildeten Iminosilanen mit den Reaktanden gedeutet werden können.

Im vorliegenden Beitrag beschreiben wir das Reaktionsverhalten des Lithium-Derivats von Di-tert-butvl(tert-butylamino)fluorsilan (1) gegenüber Schwefel und Selen. Da Iminophosphane mit Chalkogenen unter Koordinationsaufweitung reagieren, schlossen wir die vergleichbare Reaktion eines intermediären Iminosilans nicht völlig aus. Jedoch stellten wir fest, daß 1 mit Schwefel und auch Selen als Amid reagiert, d. h. das Chalkogen wird nucleophil unter Abbau des S₈-Ringes bzw. der Se_n-Ketten angegriffen. Es entstehen die Bis[(fluorsilyl)amino]sulfane 2, 3 und das Selan 4. Während auch in unterschiedlich molaren Ansätzen als Reaktionsprodukte von 1 mit S₈ Bis(fluorsilylamino)di-(2) und -trisulfan (3) isoliert wurden, bildete sich mit Selen ausschließlich das Monoselan 4 (Schema 2). Die große Reaktivität von 1 ermöglichte erstmals den Einsatz von elementarem Selen bei der Synthese eines (Silylamino)selans.

Schema 2

$$\begin{array}{c}
+S_{8} \\
+S_{i}-N-S_{n}-N-S_{i}-1 \\
+S_{i}-N-S_{n}-N-S_{i}-1 \\
+S_{i}-N-S_{i}-1 \\$$

2-4 destillieren im Vakuum unzersetzt. 4 ist bei Raumtemperatur rot und zähflüssig. 3 kristallisiert nach der Destillation aus.

Im Kristall ordnet sich die FSiNS3NSiF-Kette in einer Helix an (Abb. 1). Die Bindungslängen entsprechen weitgehend den Summen der Kovalenzradien der beteiligten Atome. Die Si-F-Bindungen haben Werte von 160.0 und 160.8 pm ($\Sigma rk = 160.7$ pm); die Werte der Si-N-Bindungen betragen 175.1 bzw. 175.4 pm ($\Sigma rk = 175.3$ pm), die S-N-Abstände sind mit 166.8 und 168.0 pm etwas kürzer als der berechnete Wert (171.5 pm). Andererseits sind die S-S-Bindungen (210.2 und 208.2 pm) marginal länger als der berechnete Wert (208.0 pm)⁷).

Nach der VSEPR-Theorie sollte der S-S-S-Winkel etwas kleiner als der Tetraederwinkel sein. Dies trifft mit 104.7° zu. Die N-Atome (ΣN1: 359.3°, ΣN2: 359.8°) besitzen eine planare Umgebung. Die S-S-N-Winkel (110.0 und 110.3°) sind gegenüber dem Tetraederwert leicht aufgeweitet.

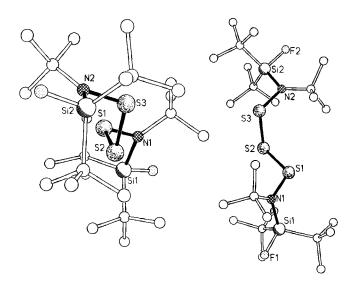


Abb. 1. Struktur von 3 im Kristall; ausgewählte Bindungslängen [pm] und -winkel $[\,^\circ]$: S (1)-S(2) 210.2(1), S(1)-N(1) 166.8(2), S(2)-S(3) 208.2(1), S(3)-N(2) 168.0(2), N(1)-Si(1) 175.1(2), Si(1)-F(1) 160.8(2), N(2)-Si(2) 175.4(2), Si(2)-F(2) 160.0(2); S(2)-S(1)-N(1) 110.0(1), S(1)-S(2)-S(3) 104.7(1), S(2)-S(3)-N(2) 110.3(1), S(1)-N(1)-Si(1) 107.5(1), N(1)-Si(1)-F(1) 103.4(1), S(3)-N(2)-Si(2) 107.8(1), N(2)-Si(2)-F(2) 105.2(1)

Für die Unterstützung dieser Arbeit danken wir der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie.

Experimenteller Teil

Strukturbestimmung von 3: Datensammlung bei $-120\,^{\circ}\text{C}$ auf einem STOE-Siemens-AED-Diffraktometer, graphitmonochromatisierte Mo- K_{α} -Strahlung ($\lambda=71.073\,\text{pm}$). Strukturlösung mit Direkten Methoden⁸), Kleinste-Quadrate-Rechnungen. Anisotrope Verfeinerung der Nichtwasserstoffatome, H-Atome geometrisch ideal positioniert und mit festen Auslenkungsparametern nach dem Reitermodell ($d\text{CH}=98\,\text{pm}$) verfeinert. η -Verfeinerung: $\eta=1.1(1)$.

 $C_{24}H_{54}F_2N_2S_3Si_2$, Molmasse 561.1 g mol⁻¹; orthorhombische Raumgruppe $P2_12_12_1$; a=894.6(1), b=1572.2(1), c=2319.8(2) pm; V=3.263 nm³; Z=4; $\varrho_{ber}=1.155$ Mgm⁻³; $\mu=0.32$ mm⁻¹; STOE-Vierkreisdiffraktometer AED, Mo- K_{∞} , $T=-120\,^{\circ}$ C; Profiloptimierte 2Θ-ω-Abtastungen; Kristallgröße $0.4\times0.4\times0.4$ mm; 3706 Reflexe bis $2\Theta_{max}=45^{\circ}$ gemessen, davon 3260 symmetrieunabhängige und mit $|F_o|>3\sigma(|F_o|)$ beobachtete Reflexe m=3131; verfeinerte Parameter n=298; Übereinstimmungsgüte $[\Sigma\omega(|F_o|-|F_c|)^2/(m-n)]^{0.5}=1.51$; $R=\Sigma||F_o|-|F_c||/\Sigma|F_o|=0.0264$; $\omega R=R_g=[\Sigma\omega(|F_o|-|F_c|)^2/\Sigma\omega|F_o|^2]^{0.5}=0.0325$; Wichtungsschema $\omega^{-1}=\sigma^2|F_o|+0.0002|F_o|^2$; Restelektronendichte $[10^6$ e-pm⁻³]: Max/min 2.7/2.0; Programm SHELXS-868, SHELX-769. Tab. 1 enthält die Atomparameter und U(eq)-Werte.

Weitere Einzelheiten zur Kristallstrukturanalyse können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55667, der Autorennamen und des Zeitschriftenzitats angefordert werden.

Darstellung der Bis[(fluorsilyl)amino]di- und -trisulfane 2, 3 sowie des Bis[(fluorsilyl)amino]selans 4: 4.7 g (0.02 mol) 1 und 2.5 g (0.01 mol) S₈ bzw. 4 g (0.05 mol) graues Sc in 70 ml n-Hexan/30 ml THF werden unter Rückfluß erhitzt und gerührt. Der Reaktionsfortschritt wird¹⁹F-NMR-spektroskopisch verfolgt. Die Umsetzung mit Schwefel verläuft exotherm und ist nach ca. 2 h beendet, die mit Selen nach ca. 48 h. 2 und 3 entstehen auch bei unterschiedlich molaren Ansätzen nebeneinander. Destillativ wurden 2 und 3 nicht vollständig voneinander getrennt. Durch Kristallisation aus n-Hexan konnte 3 jedoch rein isoliert werden. 4 ist nach der Vakuumdestillation analysenrein.

Tab. 1. Atomkoordinaten (\times 10⁴) und äquivalente isotrope Auslenkungsparameter [pm² \times 10⁻¹] von 3.

	x	У	z	*(p9)U
S(1)	8818(1)	319(1)	523(1)	29(1)
S(2)	9932(1)	1194(1)	1057(1)	35(1)
S(3)	8243(1)	1960(1)	1392(1)	29(1)
N(1)	9198(3)	525(1)	-167(1)	27(1)
C(5)	8315(4)	1185(2)	-510(1)	34(1)
C(51)	7451(5)	7 4 7(2)	-990(2)	61(1)
C(52)	9381(5)	1825(2)	-755(2)	82(2)
C(53)	7205(5)	1632(2)	-131(2)	69(1)
Si(1)	10487(1)	-238(1)	-402(1)	26(1)
F(1)	10581(2)	-75(1)	-1086(1)	40(1)
C(1)	9726(4)	-1369(2)	-339(1)	35(1)
C(11)	9965(5)	-1788(2)	251(1)	60(1)
C(12)	10481(5)	-1935(2)	-795(1)	58(1)
C(13)	8047(4)	-1357(2)	-469(2)	56(1)
C(2)	12461(4)	-30(2)	-143(1)	37(1)
C(21)	12783(4)	917(2)	-213(2)	61(1)
C(22)	12807(4)	-286(3)	481(1)	64(1)
C(23)	13542(4)	-5 2 7(2)	-539(2)	61(1)
N(2)	7719(3)	1605(1)	2045(1)	26(1)
C(6)	6627(3)	870(2)	2083(1)	30(1)
C(61)	5689(4)	932(2)	2628(1)	49(1)
C(62)	7501(5)	37(2)	2089(2)	56(1)
C(63)	5558(4)	884(2)	1575(1)	56(1)
Si(2)	8535(1)	2271(1)	2564(1)	25(1)
F(2)	7968(2)	1912(1)	3171(1)	43(1)
C(3)	77 0 0(4)	3384(2)	2527(1)	37(1)
C(31)	6013(5)	3286(2)	2456(2)	87(2)
C(32)	7988(6)	3856(2)	3089(1)	75(2)
C(33)	8256(6)	3932(2)	2038(2)	70(2)
C(4)	10637(3)	2165(2)	2631(1)	31(1)
C(41)	11585(4)	2578(2)	2159(1)	46(1)
C(42)	11122(4)	2554(2)	3212(1)	51(1)
C(43)	11001(4)	1209(2)	2659(2)	49(1)

* Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} -Tensors

2 : Sdp. 140 – 150 °C/0.01 mbar. Ausb. 1.0 g (20%). – MS (FJ-Messung): m/z (%) = 528 (22) [M+], 264 (100) [1/2 M+]. – ¹H-NMR (CDCl₃): δ = 1.17 [d, 9 H, SiC(CH₃)₃, ⁴ J_{HF} = 1.8 Hz], 1.18 [d, 9 H, SiC(CH₃)₃, ⁴ J_{HF} = 1.8 Hz], 1.40 [d, 9 H, NC (CH₃)₃, ⁵ J_{HF} = 2.3 Hz]. – ¹³C-NMR (CDCl₃): δ = 21.71 (d, ² J_{CF} = 13.3 Hz, SiC), 22.33 (d, ² J_{CF} = 13.6 Hz, SiC), 28.74 (d, ³ J_{CF} = 0.9 Hz, SiCC₃), 29.44 (d, ³ J_{CF} = 1.3 Hz, SiCC₃), 31.19 (d, ⁴ J_{CF} = 4.7 Hz, NCC₃), 59.80 (d, ³ J_{CF} = 2.4 Hz, NC). – ¹⁹F-NMR (CDCl₃): δ = 12.7. – ²⁹Si-NMR (CDCl₃): δ = -6.13 (d, J_{SiF} = 309.7 Hz.)

3: Sdp. 150 °C/0.01 mbar. — MS (FJ-Messung): m/z = 560 (100) [M+]. — ¹H-NMR (CDCl₃): $\delta = 1.10$ [d, 9 H, SiC(CH₃)₃, $^4J_{\rm HF} = 1.2$ Hz], 1.11 [d, 9 H, SiC(CH₃)₃, $^4J_{\rm HF} = 1.2$ Hz], 1.38 [d, 9 H, NC(CH₃)₃, $^5J_{\rm HF} = 1.8$ Hz]. — ¹³C-NMR (CDCl₃): $\delta = 21.17$ (d, $^2J_{\rm CF} = 13.8$ Hz, SiC), 22.85 (d, $^2J_{\rm CF} = 12.9$ Hz, SiC), 28.75 (d, $^3J_{\rm CF} = 12.9$ Hz, SiC), 29.75 (d, $^3J_{\rm CF} = 12.9$ Hz, SiC), 29.75

1.1 Hz, SiCC₃), 29.68 (d, ${}^{3}J_{CF} = 1.3$ Hz, SiCC₃), 32.18 (d, ${}^{4}J_{CF} =$ 4.5 Hz, NCC₃), 59.10 (d, ${}^{3}J_{CF} = 2.4$ Hz, NC). $- {}^{19}F$ -NMR (CDCl₃, C_6F_6): $\delta = 10.8$. - ²⁹Si-NMR (CDCl₃): $\delta = -4.30$ (d, $J_{SiF} =$ 308.4 Hz).

4: Sdp. $160 \,^{\circ}\text{C}/0.01 \,\text{mbar.} - \text{MS (FJ-Messung): } m/z = 544 (3)$ $[M^{+}]$, 311 (100). - ¹H-NMR (CDCl₃): $\delta = 1.03$ [d, 18 H, Si- $C(CH_3)_3$, ${}^4J_{HF} = 1.1 \text{ Hz}$, 1.78 [d, 9 H, $NC(CH_3)_3$, ${}^5J_{HF} = 0.9 \text{ Hz}$]. - ¹⁹F-NMR (CDCl₃, C₆F₆): δ = 9.0. - ²⁹Si-NMR (CDCl₃): δ = -42.60 (d, $J_{SiF} = 274.6$ Hz).

> $C_{24}H_{54}F_2N_2SeSi_2$ (543.5) Ber. C 53.04 H 9.94 Gef. C 52.43 H 9.36

CAS-Registry-Nummern

1: 58802-37-2 / 2: 135740-63-5 / 3: 135740-64-6 / 4: 135740-65-7 / $\mathbf{S_8}$: 10544-50-0 / Se: 7782-49-2

¹⁾ O. J. Scherer, Angew. Chem. 81 (1969) 871; Angew. Chem. Int. Ed.Engl. 8 (1969) 861.

Ed. Engl. 8 (1909) 601.

N. Björgvinsson, H. W. Roesky, F. Pauer, D. Stalke, G. M. Sheldrick, Inorg. Chem. 29 (1990) 5140.

G. Schubert, G. Kiel, G. Gattow, Z. Anorg. Allg. Chem. 575

4) U. Klingebiel in Silicon Chemistry (J. Y. Corey, E. R. Corey, P. P. Gaspar, Hrsg.), Bd. 31, S. 337, Ellis Horwood Ltd., Chichester, England, 1988.

5 S. Vollbrecht, U. Klingebiel, D. Schmidt-Bäse, Z. Naturforsch., Teil B 46 (1991) 709.

6 S. Walter, U. Klingebiel, D. Schmidt-Bäse, J. Organomet. Chem., im Druck.

17) C. Pauling, Die Natur der chemischen Bindung, VCH Verlagsgesellschaft, Weinheim 1968.

8) G. M. Sheldrick, Acta Crystallogr., Sect. A, 46 (1990) 467.

9) G. M. Sheldrick, SHELX-76, erweiterte Version, Universität

Cambridge 1976.

[224/91]